Condensation Reaction of α - Aroyl- α-acetyl Ketene Cyclic Dithioacetals with Aromatic Aldehydes

Zhong Wei XIE*, Qun Xin FANG, Yu Lan HU, Mei Xin ZHAO, Dong YU, Qun LIU
Department of Chemistry, Northeast Normal University, Changchun, 130024

Abstract

The title compounds $\mathbf{3}$ and $\mathbf{4}$ condensed with aromatic aldehydes to give α-aroyl- α-cinnamoyl ketene cyclic dithioacetals 5 and 6 with sodium ethoxide as the base. The stereochemistry of 5 and 6 was assigned as E-configuration by ${ }^{1} \mathrm{H}$ NMR.

Keywords: α-aroyl- α-cinnamoyl ketene cyclic dithioacetals, aromatic, aldehydes, condensation reaction.

As a versatile three-carbon synthon, α-oxoketene dimethylthio acetals $\mathbf{1}$ have been applied in many fields ${ }^{1,2}$. In our previous works ${ }^{3-5}$, some properties, especially addition selectivity, of the α-oxoketene cyclic dithioacetals $\mathbf{2}$ were found to be quite different from those of $\mathbf{1}$. Here α-aroyl- α-acetyl ketene cyclic dithioacetals $\mathbf{3}$ and $\mathbf{4}$ were allowed to condense with aromatic aldehydes, and fifteen new compounds 5 and $\mathbf{6}$ were obtained in moderate to high yields. But 5, $\mathbf{6}$ from $\mathbf{1}$ could only be obtained in low yields.

1

2

3 or 4
5 or 6
The experiments showed that optimum yields of 5 and 6 were obtained when the temperature of reaction was controlled between $40-60^{\circ} \mathrm{C}$.

In our experiments, J between two protons of $\mathrm{C}^{\prime}=\mathrm{C}$ bond is about 15 Hz and this shows the stereochemistry of $\mathbf{5}$ and $\mathbf{6}$ is in E-configuration ${ }^{6}$.

All compounds synthesized are assigned by their IR and ${ }^{1} \mathrm{H}$ NMR spectra.

Table

Substrate	Product	n	R	Ar	yield (\%)
3a	5a	1	H	ph	59
3b	5b	1	H	$\mathrm{m}-\mathrm{O}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4}$	52
3c	5c	1	H	p- $\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	58
3d	5d	1	H		51
3 e	5e	1	H	phCH=CH	63
3 f	5 f	1	H	p-N $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	35
3g	5 g	1	$\mathrm{CH}_{3} \mathrm{O}$		73
4a	6	2	H	ph	72
4b	6 b	2	H	p-N $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	52
4 c	6 c	2	H	p- $\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	80
4d	6 d	2	H		74
4e	6 e	2	H	phCH=CH	85
4 f	$6 f$	2	H		80
4 g	6 g	2	$\mathrm{CH}_{3} \mathrm{O}$	$\mathrm{phCH}=\mathrm{CH}$	64
4h	6 h	2	$\mathrm{CH}_{3} \mathrm{O}$	ph	50

References

1. R. K. Dieter, Tetrahedron, 1986, 42, 3029.
2. H. Junjappa, H. Ila and C. V. Asokan, Tetrahedron, 1990, 46, 5423.
3. Q. Liu and B. Z. Zhao, ChineseChem Lett, 1991, 2, 353.
4. Q. Liu and D. W. Dong, Z. Y. Yang, et al , Chem. J. Chinese Univ, 1993, 14 (3), 353.
5. Q. Liu, Z. M. Zhu, Z. Y. Yang, et al , Chem. J. Chinese Univ, 1993, 14 (11), 1538.
6. Y. Z. Shi, X. Z. Sun, Y. H. Giang, et al . "Spectral and chemical identification of organic compounds", Science and Technology Press, Jiangsu Province, China. 1992.

Received 24 June 1998

