Condensation Reaction of α– Aroyl–α–acetyl Ketene Cyclic Dithioacetals with Aromatic Aldehydes

Zhong Wei XIE*, Qun Xin FANG, Yu Lan HU, Mei Xin ZHAO, Dong YU, Qun LIU

Department of Chemistry, Northeast Normal University, Changchun, 130024

Abstract: The title compounds **3** and **4** condensed with aromatic aldehydes to give α -aroyl- α -cinnamoyl ketene cyclic dithioacetals **5** and **6** with sodium ethoxide as the base. The stereochemistry of **5** and 6 was assigned as E-configuration by ¹H NMR.

Keywords: α -aroyl- α -cinnamoyl ketene cyclic dithioacetals, aromatic, aldehydes, condensation reaction.

As a versatile three-carbon synthon, α -oxoketene dimethylthio acetals **1** have been applied in many fields^{1, 2}. In our previous works³⁻⁵, some properties, especially addition selectivity, of the α -oxoketene cyclic dithioacetals **2** were found to be quite different from those of **1**. Here α -aroyl- α -acetyl ketene cyclic dithioacetals **3** and **4** were allowed to condense with aromatic aldehydes, and fifteen new compounds **5** and **6** were obtained in moderate to high yields. But **5**, **6** from **1** could only be obtained in low yields.

3 or 4

5 or 6

The experiments showed that optimum yields of 5 and 6 were obtained when the temperature of reaction was controlled between $40-60^{\circ}$ C.

In our experiments, J between two protons of C'=C bond is about 15 Hz and this shows the stereochemistry of **5** and **6** is in E-configuration⁶.

All compounds synthesized are assigned by their IR and ¹H NMR spectra.

Substrate	Product	n	R	Ar	yield (%)
3a	5a	1	Н	ph	59
3b	5b	1	Н	$m-O_2N-C_6H_4$	52
3c	5c	1	Н	p-OCH ₃ C ₆ H ₄	58
3d	5d	1	Н		51
3e	5e	1	Н	phCH=CH	63
3f	5f	1	Н	p-N (CH3)2C6H4	35
3g	5g	1	CH ₃ O		73
4a	6a	2	Н	ph	72
4b	6b	2	Н	p-N (CH3)2C6H4	52
4c	6c	2	Н	p-OCH ₃ C ₆ H ₄	80
4d	6d	2	Н		74
4e	6e	2	Н	phCH=CH	85
4f	6f	2	Н		80
4 g	6g	2	CH ₃ O	phCH=CH	64
4h	6h	2	CH ₃ O	ph	50

Table

References

1. R. K. Dieter, Tetrahedron, 1986, 42, 3029.

- 2. H. Junjappa, H. Ila and C. V. Asokan, Tetrahedron, 1990, 46, 5423.
- 3. Q. Liu and B. Z. Zhao, ChineseChem Lett, 1991, 2, 353.
- 4. Q. Liu and D. W. Dong, Z. Y. Yang, et al, Chem. J. Chinese Univ, 1993, 14 (3), 353.
- 5. Q. Liu, Z. M. Zhu, Z. Y. Yang, et al , Chem. J. Chinese Univ, 1993, 14 (11), 1538.
- 6. Y. Z. Shi, X. Z. Sun, Y. H. Giang, et al. "Spectral and chemical identification of organic compounds", Science and Technology Press, Jiangsu Province, China. **1992.**

Received 24 June 1998